Part Number Hot Search : 
BEOAT 7805F ASB406L 32C414 Q4004LT SMC24A C4304 BUZ30A
Product Description
Full Text Search
 

To Download TS486 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS486 TS487
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE
s OPERATING FROM Vcc=2V to 5.5V s STANDBY MODE ACTIVE LOW (TS486) or s OUTPUT POWER: 102mW @5V, 38mW s LOW CURRENT CONSUMPTION: 2.5mA max s High Signal-to-Noise ratio: 103dB(A) at 5V s High Crosstalk immunity: 83dB (F=1kHz) s PSRR: 58 dB (F=1kHz), inputs grounded s ON/OFF click reduction circuitry s Unity-Gain Stable s SHORT CIRCUIT LIMITATION s Available in SO8, MiniSO8 & DFN 3x3mm
DESCRIPTION The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32 stereo headset. Capable of descending to low voltages, it delivers up to 90mW per channel (into 16 loads) of continuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS
TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT: DFN8
PIN CONNECTIONS (top view)
TS486IDT: SO8, TS486IST, TS486-1IST, TS486-2IST, TS486-4IST: MiniSO8
HIGH (TS487)
@3.3V into 16 with 0.1% THD+N max (1kHz)
OUT (1) VIN (1) BYPASS GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN (2) SHUTDOWN
OUT
(1)
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN (2) SHUTDOWN
VIN (1) BYPASS GND
TS487IDT: SO8, TS487IST, TS487-1IST, TS487-2IST, TS487-4IST: MiniSO8
s Headphone Amplifier s Mobile phone, PDA, computer motherboard s High end TV, portable audio player
ORDER CODE
Part Temperature Package Number Range: I DSQ TS486 TS487 TS486 TS486-1 TS486-2 TS486-4 TS487 TS487-1 TS487-2 TS487-4 * * * tba tba tba * tba tba tba * tba tba tba * tba tba tba Gain Marking
OUT (1) VIN (1) BYPASS GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN (2) SHUTDOWN
-40, +85C
external TS486I external TS487I external K86A x1/0dB K86B x2/6dB K86C x4/12dB K86D external K87A x1/0dB K87B x2/6dB K87C x4/12dB K87D
TS487-IQT, TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8
OUT (1) VIN (1) BYPASS GND
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN (2) SHUTDOWN
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)
June 2003
1/31
TS486-TS487
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Tstg Tj Rthja Supply voltage Input Voltage Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 Power Dissipation 2) SO8 MiniSO8 DFN8
1)
Parameter
Value 6 -0.3v to VCC +0.3v -65 to +150 150 175 215 70 0.71 0.58 1.79 1.5 100 200 250 continous 4)
Unit V V C C C/W
Pd
W
Human Body Model (pin to pin): TS486, TS4873) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND
1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C.
kV V mA C
3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy.
OPERATING CONDITIONS
Symbol VCC RL Toper CL Supply Voltage Load Resistor Operating Free Air Temperature Range Load Capacitor RL = 16 to 100 RL > 100 Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN82) Parameter Value 2 to 5.5 16 -40 to + 85 400 100 1.5 VSTB VCC GND VSTB 0.4 1) 150 190 41 Unit V C pF
VSTB
V
RTHJA
1.
C/W
The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range.
2.
When mounted on a 4-layer PCB.
2/31
TS486-TS487
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol RIN 1,2 Input Resistance 1) Gain value for Gain TS486/TS487-1 G Gain value for Gain TS486/TS487-2 Gain value for Gain TS486/TS487-4
1. See figure 30 to establish the value of Cin vs. -3dB cut off frequency.
Parameter
Min.
Typ. 20 0dB 6dB 12dB
Max.
Unit k
dB
APPLICATION COMPONENTS INFORMATION
Components RIN1,2 CIN1,2 RFEED1,2 CS CB COUT1,2 Functional Description Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions. Input coupling capacitor which blocks the DC voltage at the amplifier's input terminal. Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions. Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering. Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT )).
TYPICAL APPLICATION SCHEMATICS
3/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32 No input signal, VSTANDBY=Vcc for TS487, RL=32 Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 1.8 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
PO
60 95
64 65 102 108
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) RL = 32, Pout = 60mW, 20Hz F 20kHz RL = 16, Pout = 90mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, RL = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 106
0.3 0.3 58 115
%
PSRR IO
dB mA
VO
4.45 4.2 80
0.45 4.52 0.6 4.35 103
0.5 V 0.7
SNR
dB
Crosstalk
83 79 80 72 1 1.1 0.4
dB
CI GBP SR
pF MHz V/s
1. Only for external gain version. 2. Guaranteed by design and evaluation.
4/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) 1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32 No input signal, VSTANDBY=Vcc for TS487, RL=32 Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 1.8 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
PO
23 36
26 28 38 42
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) RL = 32, Pout = 16mW, 20Hz F 20kHz RL = 16, Pout = 35mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, RL = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 64
0.3 0.3 58 75
%
PSRR IO
dB mA
VO
2.85 2.68 80
0.3 3 0.45 2.85 98
0.38 V 0.52
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
1.
pF MHz V/s
All electrical values are guaranted with correlation measurements at 2V and 5V.
2. 3.
Only for external gain version. Guaranteed by design and evaluation.
5/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified)1)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS486, RL=32 VSTANDBY=Vcc for TS487, RL=32 Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16
PO
12.5 17.5
13 14 21 22
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) RL = 32, Pout = 10mW, 20Hz F 20kHz RL = 16, Pout = 16mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 3) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 3) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, RL = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 53 45
0.3 0.3 58 56
%
PSRR IO
dB mA
VO
2.14 1.97 80
0.25 2.25 0.35 2.15 95
0.32 V 0.45
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
1.
pF MHz V/s
All electrical values are guaranted with correlation measurements at 2V and 5V.
2. 3.
Only for external gain version. Guaranteed by design and evaluation.
6/31
TS486-TS487
ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS486, RL=32 No input signal, VSTANDBY=Vcc for TS487, RL=32 Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) 1) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.3% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 1.7 10 1 90 200 Max. 2.5 1000 Unit mA
ISTANDBY VIO IIB
nA mV nA
PO
7 9.5
8 9 12 13
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) RL = 32, Pout = 6.5mW, 20Hz F 20kHz RL = 16, Pout = 8mW, 20Hz F 20kHz Power Supply Rejection Ratio, inputs grounded 2) (Av=-1), RL>=16, CB=1F, F = 1kHz, Vripple = 200mVpp Max Output Current THD +N 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (A weighted, Av=-1) 2) (RL = 32, THD +N < 0.4%, 20Hz F 20kHz) Channel Separation, RL = 32, Av=-1 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16, Av=-1 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 52 33
0.3 0.3 57 41
%
PSRR IO
dB mA
VO
1.67 1.53 80
0.24 1.73 0.33 1.63 93
0.29 V 0.41
SNR
dB
Crosstalk
80 76 77 69 1 1.1 0.4
dB
CI GBP SR
pF MHz V/s
1. Only for external gain version. 2. Guaranteed by design and evaluation.
7/31
TS486-TS487
Index of Graphs
Description Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage Low Frequency Cut Off vs Input Capacitor for fixed gain versions Curves With 0dB Gain Setting (Av=-1) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 6dB Gain Setting (Av=-2) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency Curves With 12dB Gain Setting (Av=-4) THD + N vs Output Power THD + N vs Frequency Crosstalk vs Frequency Signal to Noise Ratio vs Power Supply Voltage PSRR vs Frequency 80 to 88 89 to 91 92 to 95 96 to 97 98 to 102 22 to 24 24 24 25 26 57 to 65 66 to 68 69 to 72 73 to 74 75 to 79 19 to 20 20 21 21 22 31 to 39 40 to 42 43 to 48 49 to 50 51 to 56 14 to 15 15 16 17 17 to 18 1 to 10 11 12 to 17 18 to19 20 to 23 24 to 27 28 29 30 9 to 10 10 10 to 11 11 to 12 12 12 to 13 13 13 13 Figure Page
8/31
TS486-TS487
Fig. 1: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 2: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 5V ZL = 16 Tamb = 25C
160 140 120
Vcc = 5V ZL = 16+400pF Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
Fig. 3: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 4: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 2V ZL = 16 Tamb = 25C
160 140 120
Vcc = 2V ZL = 16+400pF Tamb = 25C
160 140 120 100
100 Phase 80 60
Phase 20 0 -20 -40 0.1
20 0 -20 -40 0.1
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
Fig. 5: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 6: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 5V ZL = 32 Tamb = 25C
160 140 120
Vcc = 5V ZL = 32+400pF Tamb = 25C
160 140 120 100
Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
9/31
Phase (Deg)
40
40
Phase (Deg)
40
40
TS486-TS487
Fig. 7: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Gain (dB)
Fig. 8: Open Loop Gain and Phase vs Frequency
180 80 Gain 60
Phase (Deg) Gain (dB)
Vcc = 2V ZL = 32 Tamb = 25C
160 140 120
Vcc = 2V ZL = 32+400pF Tamb = 25C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000
Fig. 9: Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
Fig. 10: Open Loop Gain and Phase vs Frequency
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 600 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 600 Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 11: Current Consumption vs Power Supply Voltage
2.0
No load
Fig. 12: Current Consumption vs Standby Voltage
2.0
Current Consumption (mA)
Current Consumption (mA)
Ta=85C 1.5
1.5 Ta=85C
Ta=25C
Ta=25C
Ta=-40C
1.0
1.0
Ta=-40C
0.5
0.5
TS486 Vcc = 5V No load
0.0
0
1
2
3
4
5
0.0
0
1
2
3
4
5
Power Supply Voltage (V)
Standby Voltage (V)
10/31
TS486-TS487
Fig. 13: Current Consumption vs Standby Voltage
2.0
Fig. 14: Current Consumption vs Standby Voltage
2.0 Ta=85C
Current Consumption (mA)
1.5 Ta=85C Ta=25C 1.0 Ta=-40C 0.5 TS486 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
Current Consumption (mA)
1.5 Ta=25C 1.0
0.5
Ta=-40C TS486 Vcc = 2V No load
0.0
0
1 Standby Voltage (V)
2
Fig. 15: Current Consumption vs Standby Voltage
2.5 Ta=85C Current Consumption (mA) 2.0 Ta=25C
Fig. 16: Current Consumption vs Standby Voltage
2.0 Ta=25C
Current Consumption (mA)
1.5 Ta=85C Ta=-40C 1.0
1.5
1.0
Ta=-40C
0.5 TS487 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3
0.5
TS487 Vcc = 5V No load 0 1 2 3 4 5
0.0
Standby Voltage (V)
Fig. 17: Current Consumption vs Standby Voltage
2.0 Ta=85C
Fig. 18: Output Power vs Power Supply Voltage
200 175 RL = 16 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
Current Consumption (mA)
THD+N=1%
1.5
Output power (mW)
150
Ta=25C
125 100 75 50
1.0
0.5
Ta=-40C TS487 Vcc = 2V No load
THD+N=0.1% 25
2
0.0
0
1 Standby Voltage (V)
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
11/31
TS486-TS487
Fig. 19: Output Power vs Power Supply Voltage Fig. 20: Output Power vs Load Resistor
200 100
Output power (mW)
Output power (mW)
RL = 32 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
180 THD+N=1% 160 140 120 100 80 60 40 20 THD+N=0.1% THD+N=1%
Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C
75
THD+N=10%
50
25
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0
8
16
24
32 40 48 Load Resistance ( )
56
64
Fig. 21: Output Power vs Load Resistor
Fig. 22: Output Power vs Load Resistor
50
70 60 THD+N=1%
Output power (mW)
Output power (mW)
Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance ( ) THD+N=1%
50 40 THD+N=10% 30 20 10 0 THD+N=0.1%
Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10%
8
16
24
32 40 48 Load Resistance ( )
56
64
0
56
64
Fig. 23: Output Power vs Load Resistor
Fig. 24: Power Dissipation vs Output Power
25 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C
20
Output power (mW)
THD+N=1% 15
Power Dissipation (mW)
Vcc=5V 80 F=1kHz THD+N<1% 60 RL=16
THD+N=10% 10
40
20
RL=32
5 THD+N=0.1% 0
0
8
16
24
32 40 48 Load Resistance ( )
56
64
0
20
40
60
80
100
Output Power (mW)
12/31
TS486-TS487
Fig. 25: Power Dissipation vs Output Power
40 Vcc=3.3V F=1kHz THD+N<1% 30 RL=16 20
Fig. 26: Power Dissipation vs Output Power
Power Dissipation (mW)
Power Dissipation (mW)
20
Vcc=2.5V F=1kHz THD+N<1% RL=16
10 RL=32
10
RL=32
0
0
0 10 20 Output Power (mW) 30 40
0
5
10
15
20
Output Power (mW)
Fig. 27: Power Dissipation vs Output Power
Fig. 28: Power Derating vs Ambiant Temperature
15 Power Dissipation (mW) Vcc=2V F=1kHz THD+N<1% 10 RL=16
5 RL=32 0
0
2
4
6
8
10
12
Output Power (mW)
Fig. 29: Output Voltage Swing vs Power Supply Voltage
Fig. 30: Low Frequency Cut Off vs Input Capacitor for fixed gain versions.
5.0 4.5 4.0
VOH & VOL (V)
Tamb=25C

RL=32 RL=16
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
13/31
TS486-TS487
Fig. 31: THD + N vs Output Power Fig. 32: THD + N vs Output Power
10 RL = 16 F = 20Hz Av = -1 1 Cb = 1F BW < 22kHz Tamb = 25C
10 RL = 32 F = 20Hz Av = -1 1 Cb = 1F BW < 22kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V
0.1
Vcc=2.5V
THD + N (%)
Vcc=5V
0.01 0.01 1
Vcc=3.3V Vcc=3.3V Vcc=5V
10 Output Power (mW)
100
1
10 Output Power (mW)
100
Fig. 33: THD + N vs Output Power
Fig. 34: THD + N vs Output Power
10 RL = 600, F = 20Hz Av = -1, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
10 RL = 16 F = 1kHz Av = -1 1 Cb = 1F BW < 125kHz Tamb = 25C
1
THD + N (%)
THD + N (%)
Vcc=2V
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
100
Fig. 35: THD + N vs Output Power
Fig. 36: THD + N vs Output Power
10
Vcc=2V
10 RL = 32 F = 1kHz Av = -1 1 Cb = 1F BW < 125kHz Tamb = 25C 0.1
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=3.3V
0.1
Vcc=5V
0.01
Vcc=2.5V
0.01 RL = 600, F = 1kHz Av = -1, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01 0.1 Output Voltage (Vrms) 1
Vcc=3.3V
Vcc=5V
1E-3
1
10 Output Power (mW)
14/31
TS486-TS487
Fig. 37: THD + N vs Output Power Fig. 38: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -1 Cb = 1F BW < 125kHz 1 Tamb = 25C
10 RL = 32 F = 20kHz Av = -1 Cb = 1F BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.5V
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V
THD + N (%)
0.1
Vcc=3.3V Vcc=5V
1
10 Output Power (mW)
100
1
10 Output Power (mW)
100
Fig. 39: THD + N vs Output Power
Fig. 40: THD + N vs Frequency
10
Vcc=2V
1
Vcc=2.5V
RL=16 Av=-1 Cb = 1F Bw < 125kHz Tamb = 25C
THD + N (%)
0.1
THD + N (%)
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
0.01 RL = 600, F = 20kHz Av = -1, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=3.3V Vcc=5V
0.01
0.1 Output Voltage (Vrms)
1
20
100
1000 Frequency (Hz)
10000 20k
Fig. 41: THD + N vs Frequency
Fig. 42: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=32 Av=-1 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
RL=600 Av=-1 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C
Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms
Vcc=2V, Po=6mW Vcc=5V, Po=55mW
0.01
0.01
20
100
1000 Frequency (Hz)
10000 20k
1E-3
20
100
1000 Frequency (Hz)
10000 20k
15/31
TS486-TS487
Fig. 43: Crosstalk vs Frequency Fig. 44: Crosstalk vs Frequency
80
80
ChB to ChA
Crosstalk (dB)
ChB to ChA 40 RL=16 Vcc=5V Pout=85mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
60
ChA to ChB
60
ChA to ChB
40
20
20
RL=16 Vcc=2V Pout=7.5mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0
0
Fig. 45: Crosstalk vs Frequency
Fig. 46: Crosstalk vs Frequency
80 ChA to ChB
80
Crosstalk (dB)
Crosstalk (dB)
60
ChB to ChA
60
ChA to ChB ChB to ChA
40
20
RL=32 Vcc=5V Pout=55mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
20
RL=32 Vcc=2V Pout=6mW Av=-1 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0
0
Fig. 47: Crosstalk vs Frequency
Fig. 48: Crosstalk vs Frequency
80
80 Cb = 1F
Crosstalk (dB)
Cb = 4.7F 40
20
RL=16 Vcc=5V Pout=85mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25C 10000 20k
Crosstalk (dB)
60
Cb = 1F
60
Cb = 4.7F RL=32 Vcc=5V Pout=55mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
20
0
20
100
1000 Frequency (Hz)
0
16/31
TS486-TS487
Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) Fig. 50: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
104
Signal to Noise Ratio (dB)
100 98 96 RL=32 94 92 90 2.0 RL=16 2.5 3.0 3.5 4.0 4.5 5.0
Signal to Noise Ratio (dB)
102
Av = -1 Cb = 1F THD+N < 0.4% Tamb = 25C
104 RL=600 102 100 98
Av = -1 Cb = 1F THD+N < 0.4% Tamb = 25C
RL=600
RL=32 96 94 92 90 2.0 RL=16
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
Fig. 51: PSRR vs Power Supply Voltage
Fig. 52: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 Vcc = 5V, 3.3V & 2.5V Vripple = 200mVpp Av = -1 Input = grounded Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cb = 4.7F 100 1000 10000 Frequency (Hz) 100000 -80 100 Cb = 2.2F 1000 10000 Frequency (Hz) 100000 Cb = 1F Vripple = 200mVpp Av = -1 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
Fig. 53: PSRR vs Input Capacitor
Fig. 54: PSRR vs Output Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Cin = 100nF -70 100 1000 10000 Frequency (Hz) 100000 Cin = 1F, 220nF Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 Cout = 220F Cout = 470F Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
17/31
TS486-TS487
Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 100000 Cout = 100F Cout = 470F Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 -80 Vcc = 5V, 3.3V & 2.5V Vripple = 200mVpp Av = -1 Input = floating Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
100
1000 10000 Frequency (Hz)
100000
18/31
TS486-TS487
Fig. 57: THD + N vs Output Power Fig. 58: THD + N vs Output Power
10 RL = 16 F = 20Hz Av = -2 1 Cb = 1F BW < 22kHz Tamb = 25C
10 RL = 32 F = 20Hz Av = -2 1 Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
0.1
THD + N (%)
Vcc=2.5V
0.1
Vcc=2.5V
0.01 1
Vcc=3.3V
Vcc=5V
0.01 100 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
10 Output Power (mW)
100
Fig. 59: THD + N vs Output Power
Fig. 60: THD + N vs Output Power
10
10 RL = 600, F = 20Hz Av = -2, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
1
THD + N (%)
THD + N (%)
RL = 16 F = 1kHz Av = -2 1 Cb = 1F BW < 125kHz Tamb = 25C
Vcc=2V
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
100
Fig. 61: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = -2 1 Cb = 1F BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.5V
Fig. 62: THD + N vs Output Power
10
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
Vcc=3.3V
0.1
Vcc=5V
0.1
0.01 RL = 600, F = 1kHz Av = -2, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01 0.1 Output Voltage (Vrms) 1
0.01 1
Vcc=3.3V
Vcc=5V
10 Output Power (mW)
19/31
TS486-TS487
Fig. 63: THD + N vs Output Power Fig. 64: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -2 Cb = 1F BW < 125kHz 1 Tamb = 25C
10 RL = 32 F = 20kHz Av = -2 Cb = 1F BW < 125kHz 1 Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V Vcc=5V Vcc=2.5V Vcc=3.3V Vcc=5V
1
10 Output Power (mW)
100
THD + N (%)
0.1
1
10 Output Power (mW)
100
Fig. 65: THD + N vs Output Power
Fig. 66: THD + N vs Frequency
10
Vcc=2V
1
Vcc=2.5V
RL=16 Av=-2 Cb = 1F Bw < 125kHz Tamb = 25C
THD + N (%)
0.1
0.01 RL = 600, F = 20kHz Av = -2, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=3.3V Vcc=5V
Vcc=5V, Po=85mW
THD + N (%)
0.1
Vcc=2V, Po=7.5mW
0.01
0.1 Output Voltage (Vrms)
1
20
100
1000 Frequency (Hz)
10000 20k
Fig. 67: THD + N vs Frequency
Fig. 68: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=32 Av=-2 Cb = 1F Bw < 125kHz 0.1 Tamb=25C
RL=600 Av=-2 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C
Vcc=5V, Vo=1.3Vrms Vcc=2V, Vo=0.5Vrms
Vcc=2V, Po=6mW
0.01
0.01
Vcc=5V, Po=55mW
20
100
1000 Frequency (Hz)
10000 20k
1E-3
20
100
1000 Frequency (Hz)
10000 20k
20/31
TS486-TS487
Fig. 69: Crosstalk vs Frequency Fig. 70: Crosstalk vs Frequency
80
ChB to ChA
80
ChB to ChA
Crosstalk (dB)
ChA to ChB 40 RL=16 Vcc=5V Pout=85mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
60
60
ChA to ChB RL=16 Vcc=2V Pout=7.5mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
20
20
0
0
Fig. 71: Crosstalk vs Frequency
Fig. 72: Crosstalk vs Frequency
80
80
60 Crosstalk (dB)
60 ChA to ChB ChB to ChA 40 RL=32 Vcc=5V Pout=55mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
ChA to ChB ChB to ChA
Crosstalk (dB)
40
20
20
RL=32 Vcc=2V Pout=6mW Av=-2 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0
0
Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
100 98
Signal to Noise Ratio (dB)
Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
104
96 94 92 90 88 86 84
Signal to Noise Ratio (dB)
Av = -2 Cb = 1F THD+N < 0.4% Tamb = 25C
RL=600
102 100 98 96 94 92 90 88 86 84
Av = -2 Cb = 1F THD+N < 0.4% Tamb = 25C
RL=600
RL=32
RL=32
RL=16
RL=16
82 2.0
2.5
3.0
3.5
4.0
4.5
5.0
82 2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Power Supply Voltage (V)
21/31
TS486-TS487
Fig. 75: PSRR vs Power Supply Voltage Fig. 76: PSRR vs Bypass Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
0 -10 -20 PSRR (dB) -30 -40 Cb = 1F -50 -60 Cb = 4.7F -70 100 Cb = 2.2F 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = -2 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
Fig. 77: PSRR vs Input Capacitor
Fig. 78: PSRR vs Output Capacitor
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cin = 100nF Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cout = 220F Cout = 470F Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
Cin = 1F, 220nF
100
1000 10000 Frequency (Hz)
100000
100
1000 10000 Frequency (Hz)
100000
Fig. 79: PSRR vs Output Capacitor
Fig. 80: THD + N vs Output Power
10
0 -10 -20 PSRR (dB) -30 -40 -50 -60 -70 Cout = 100F Cout = 470F Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C
THD + N (%)
RL = 16 F = 20Hz Av = -4 Cb = 1F 1 BW < 22kHz Tamb = 25C
Vcc=2V
Vcc=2.5V
0.1
Vcc=3.3V
Vcc=5V
0.01 100 1000 10000 Frequency (Hz) 100000
1
10 Output Power (mW)
100
22/31
TS486-TS487
Fig. 81: THD + N vs Output Power
10 RL = 32 F = 20Hz Av = -4 Cb = 1F 1 BW < 22kHz Tamb = 25C
Vcc=2V
Fig. 82: THD + N vs Output Power
10 RL = 600, F = 20Hz Av = -4, Cb = 1F BW < 22kHz Tamb = 25C
Vcc=2V Vcc=2.5V Vcc=3.3V
1
THD + N (%)
THD + N (%)
0.1
Vcc=5V
0.1
Vcc=2.5V
0.01
0.01
Vcc=3.3V
Vcc=5V
1
10 Output Power (mW)
100
1E-3 0.01
0.1 Output Voltage (Vrms)
1
Fig. 83: THD + N vs Output Power
10 RL = 16 F = 1kHz Av = -4 Cb = 1F 1 BW < 125kHz Tamb = 25C
Fig. 84: THD + N vs Output Power
10 RL = 32 F = 1kHz Av = -4 Cb = 1F 1 BW < 125kHz Tamb = 25C
Vcc=2V
THD + N (%)
Vcc=2V
Vcc=2.5V
0.1
THD + N (%)
0.1
Vcc=2.5V
Vcc=3.3V
Vcc=5V
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
0.01
1
10 Output Power (mW)
100
Fig. 85: THD + N vs Output Power
10
Vcc=2V
Fig. 86: THD + N vs Output Power
10 RL = 16 F = 20kHz Av = -4 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2.5V
1
THD + N (%) THD + N (%)
Vcc=2.5V Vcc=3.3V
0.1
Vcc=2V
0.01 RL = 600, F = 1kHz Av = -4, Cb = 1F BW < 125kHz, Tamb = 25C 1E-3 0.01
Vcc=5V Vcc=3.3V Vcc=5V
0.1 Output Voltage (Vrms)
1
0.1
1
10 Output Power (mW)
100
23/31
TS486-TS487
Fig. 87: THD + N vs Output Power
10 RL = 32 F = 20kHz Av = -4 Cb = 1F BW < 125kHz Tamb = 25C 1
Vcc=2V Vcc=2.5V
Fig. 88: THD + N vs Output Power
10
Vcc=2V
1
Vcc=2.5V
THD + N (%)
THD + N (%)
0.1
0.01 RL = 600, F = 20kHz Av = -4, Cb = 1F BW < 125kHz, Tamb = 25C 100 1E-3 0.01
Vcc=3.3V Vcc=5V
0.1
Vcc=3.3V
Vcc=5V
1
10 Output Power (mW)
0.1 Output Voltage (Vrms)
1
Fig. 89: THD + N vs Frequency
Fig. 90: THD + N vs Frequency
THD + N (%)
THD + N (%)
RL=16 Av=-4 Cb = 1F Bw < 125kHz Tamb = 25C
Vcc=2V, Po=7.5mW
RL=32 Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 0.1
Vcc=2V, Po=6mW
0.1
Vcc=5V, Po=85mW
Vcc=5V, Po=55mW
0.01 20 100 1000 Frequency (Hz) 10000 20k
20
100
1000 Frequency (Hz)
10000 20k
Fig. 91: THD + N vs Frequency
Fig. 92: Crosstalk vs Frequency
80 ChB to ChA
THD + N (%)
RL=600 Av=-4 Cb = 1F 0.1 Bw < 125kHz Tamb = 25C
Vcc=2V, Vo=0.5Vrms
60 Crosstalk (dB) ChA to ChB 40 RL=16 Vcc=5V Pout=85mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0.01
20
Vcc=5V, Vo=1.3Vrms
1E-3
20
100
1000 Frequency (Hz)
10000 20k
0
24/31
TS486-TS487
Fig. 93: Crosstalk vs Frequency
80 ChB to ChA
80
Fig. 94: Crosstalk vs Frequency
60 Crosstalk (dB) Crosstalk (dB) ChA to ChB 40 RL=16 Vcc=2V Pout=7.5mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
60 ChA to ChB ChB to ChA 40 RL=32 Vcc=5V Pout=55mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
20
20
0
0
Fig. 95: Crosstalk vs Frequency
Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
100 Av = -4 Cb = 1F 96 THD+N < 0.4% Tamb = 25C 94 98 92 90 88 86 84 82 80 2.0 2.5 RL=16 RL=32 RL=600
80
60 Crosstalk (dB)
ChA to ChB ChB to ChA
40
20
RL=32 Vcc=2V Pout=6mW Av=-4 Cb = 1F Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
0
Signal to Noise Ratio (dB)
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
100 Av = -4 Cb = 1F 96 THD+N < 0.4% Tamb = 25C 94 98
Signal to Noise Ratio (dB)
Fig. 98: PSRR vs Power Supply Voltage
0
RL=600
-10 -20 -30
92 90 88 86 84 82 80 2.0 2.5 RL=16 RL=32
PSRR (dB)
Vripple = 200mVpp Av = -4 Input = grounded Cb = 1F RL >= 16 Tamb = 25C Vcc = 2V
-40 -50 Vcc = 5V, 3.3V & 2.5V -60
3.0
3.5
4.0
4.5
5.0
100
Power Supply Voltage (V)
1000 10000 Frequency (Hz)
100000
25/31
TS486-TS487
Fig. 99: PSRR vs Input Capacitor Fig. 100: PSRR vs Bypass Capacitor
0 -10 -20 -30 -40 Cin = 1F, 220nF Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, Rin = 20k RL >= 16 Tamb = 25C
0 -10 -20 PSRR (dB) -30 -40 -50 Vripple = 200mVpp Av = -4 Input = grounded Vcc = 5V RL >= 16 Tamb = 25C
PSRR (dB)
Cb = 1F
-50 Cin = 100nF -60 100 1000 10000 Frequency (Hz) 100000 -60 Cb = 4.7F 100 Cb = 2.2F 1000 10000 Frequency (Hz) 100000
Fig. 101: PSRR vs Output Capacitor
Fig. 102: PSRR vs Output Capacitor
0 -10 -20 -30 -40 -50 Cout = 220F -60 Cout = 470F Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, RL = 16 RL >= 16 Tamb = 25C
0 -10 -20 -30 -40 -50 Cout = 100F -60 100 1000 10000 Frequency (Hz) 100000 100 1000 10000 Frequency (Hz) 100000 Cout = 470F Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1F, RL = 32 RL >= 16 Tamb = 25C
26/31
PSRR (dB)
PSRR (dB)
TS486-TS487
APPLICATION NOTE:
TS486/487 GENERAL DESCRIPTION TS486/487 is a family of dual audio amplifiers able to drive 16 or 32 headsets. Working in the 2V to 5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a 16 load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period. Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts. The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications. The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. VCC). GAIN SETTING The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors RIN and RFEED. GainLINEAR = -(R FEED/RIN)
GaindB = 20 Log(RFEED/R IN) Fixed gain versions TS486-n and TS487-n including RIN and RFEED are proposed to reduce external parts. LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS The low roll-off frequency of the headphone amplifiers depends on the input capacitors CIN1 and CIN2 and the input resistors RIN1 and RIN2. The CIN capacitor in series with the input resistor RIN of the amplifier is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of CIN is: CIN > 1 / (2**Fmin*RIN ) The following curve gives directly the low frequency roll-off versus the input capacitor CIN
27/31
TS486-TS487
and for various values of the input resistor RIN .
1000
1000
Low roll- frequency (Hz) off
frequency versus the output capacitor COUT in F and for the two typical 16 and 32 impedances:
Rin = 10k 100
Rin = 1k
Low roll-off frequency (Hz)
100 RL = 16 10 RL = 32
10 Rin = 100k
Rin = 20k and fixed gain versions
1 0.01
0.1
Cin (F)
1
10
1 10 100
COUT ( F)
1000
10000
The input resistance of the fixed gain version is typically 20k. The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin:
DECOUPLING CAPACITOR CB The internal bias voltage at Vcc/2 is decoupled with the external capacitor CB. The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with CB = 1F. A higher value of CB improves the PSRR, for example, a 4.7F improves the PSRR by 15dB at 200Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor"). POP PRECAUTIONS

LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors COUT1 and COUT2 . Each output capacitor COUT in series with the resistance of the load RL is equivalent to a first order high pass filter. Assuming that Fmin is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of COUT is: COUT > 1 / (2**Fmin*RL) The following curve gives directly the low roll-off
28/31
Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged. A resistor of 1 k is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second.
TS486-TS487 PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
29/31
TS486-TS487 PACKAGE MECHANICAL DATA
30/31
TS486-TS487 PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com
31/31


▲Up To Search▲   

 
Price & Availability of TS486

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X